-
小編推薦:在封裝時如何輕松搞定PCB元件選擇
PCB工程師在設計PCB封裝時肯定會遇見PCB元件選擇的問題,那么有沒有什么好的方法或者是要注意什么關鍵細節來幫助工程師們輕松的搞定PCB元件選擇呢?當然有,小編這就分享給大家。
2015-02-24
封裝 PCB 元件選擇
-

網友教你:通過運算放大器模型來仿真增益帶寬
運算放大器的增益帶寬積(GBW)會怎樣影響你的電路并不總是顯而易見。宏模型有固定的增益帶寬積。雖然你可以深入觀察這些模型,當然最好不要瞎弄它們。那么你可以做什么?
2015-02-23
運算放大器 增益帶寬
-

如何設計運算放大器增益誤差,設計指南來幫你
選擇合適的運算放大器 (op amp) 時,首先要做的便是確定系統通過該放大器進行傳輸的信號帶寬。一旦確定下來這一點,便可以開始尋找正確的放大器。來自高速設計專家的告誡是:應該避免使用相對應用而言速度過快的模擬器件。因此,要盡量選擇一種閉環帶寬稍高于信號最大頻率的放大器。
2015-02-23
運算放大器 增益誤差
-
經驗分享:幾點工程機械蓄電池保養秘訣
蓄電池是工程機械的輔助電源,在行駛過程中,由發動機向用電設備提供電源,并向蓄電池充電。蓄電池在工程機械起動時提供起動電流。以下就指出幾點工程機械蓄電池保養秘訣:
2015-02-22
工程機械 蓄電池
-
蘋果“太陽能謠言”如何破?每度電9美分?
蘋果公司斥資8.48億美元在舊金山的 Monterey 建造一座占地1300英畝、總裝機量達280MW的巨型太陽能發電廠。在這25年里面,蘋果到底能獲得多少電?我們不妨算一下。有效總裝機為43MW,一天24小時,一年365天,一共25年,把這些數字乘一下,蘋果25年內大概能獲得94億度電。如果考慮到蘋果要支付8.5億美...
2015-02-22
太陽能 蘋果
-

技術盤點:可幫你甩掉電池的能量收集技術
過去幾年里涌現出了大量可穿戴電子產品,所面臨的共同難題之一就是電池使用壽命問題。該難題的解決方法之一就是增加從環境中收集能量的能量收集技術的使用。這種方法可用于向電池提供穩定的涓流,從而延長可穿戴設備的充電間隔并以此提升終端設計的吸引力。
2015-02-21
能量收集技術 電池
-
新LED智能照明技術幫你忙,人工和安全沒問題
本文講解的一款新型低壓直流網絡智能照明系統“Redwood”,其區別于傳統的智能照明系統,除了采用高密度的傳感器以外,還采用了低壓布線技術,采用48V的低壓數據線纜代替了傳統220V的高壓線纜,將燈具融入到了網絡化管理系統,消除了高壓相關的人工和安全問題
2015-02-19
LED 智能照明
-

教你如何恢復反激變壓器的漏泄能量?
對正向轉換器上變壓器消磁的傳統方式是,采用第二個繞組,它與初級繞組雙線繞制,這樣當功率開關切斷時(通常是一只功率FET),就可以確保磁化電流持續流過。這種電路一般會將場效應晶體管(FET)的漏源電壓限制或箝位在兩倍于直流電源軌電壓。這種采用恢復繞組的技術同樣可以成功地用于反激結構中,以...
2015-02-18
反激變壓器 漏泄能量
-
效率與壽命兼得怎么整?DC/DC電源新技術來幫你
電壓偏離值很大時,轉換效率就驟降,開關電容穩壓器為新興技術,結合開關電容器和LDO優點,可整合至可攜式應用中。通常開關電源的效率問題是目前大家比較關心的問題,那么怎么提升這個效率呢,且看下文。
2015-02-18
DC/DC 電源技術
- SiC功率模塊的“未病先防”:精確高溫檢測如何實現車載逆變器主動熱管理
- 破解多收發器同步難題:基于MAX2470的高隔離時鐘耦合方案
- 汽車照明雙突破:艾邁斯歐司朗攜手DP Patterning實現環保與智能控制完美結合
- 三核驅動革新!Melexis MLX81350重塑電動汽車空調控制
- 覆蓋全球導航系統:Abracon新品天線兼容GPS/北斗/Galileo/GLONASS四大星座
- 意法半導體CEO將重磅亮相摩根士丹利TMT大會,釋放戰略信號
- 采購無憂:貿澤電子備貨瑞薩新品,覆蓋全系列嵌入式應用
- 創新強基,智造賦能:超600家企業齊聚!第106屆中國電子展打造行業盛宴
- 安森美獲Aura半導體授權,強化AI數據中心電源生態
- 東芝攜150年創新積淀八赴進博,以科技賦能可持續未來
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall







